一篇文章详解RTK、PPP、PPP-RTK三种卫星测量技术,值得收藏

发布时间:2021-10-09 11:11:43
说到卫星测量技术,当属实时动态定位RTK、精密单点定位ppp应用得比较广泛,也是高精度卫星导航定位技术中颇具代表性的。而近年来PPP-RTK受到了国内外研究学者以及导航从业者的极大关注,本篇文章将为您详细介绍RTK、PPP、PPP-RTK三种卫星测量技术,话不多说,接下来跟小编一起来看看吧。
一、RTK、PPP、PPP-RTK概述
1、RTK实时动态定位,全称Real-Time Kinematic
RTK由差分定位技术发展而来,其原理是卫星轨道误差、卫星钟差、电离层延迟、对流层延迟等误差对相距不远的GNSS站影响接近,因此可以通过站间观测值差分消除,进而实现相位模糊度的快速固定与瞬时厘米级定位。显然,RTK技术需要架设基站,因此作业方式不灵活,成本也相对较高,而且随着用户与基准站距离的增加,其定位效果显著降低。
2、精密单点定位PPP,全称Precise Point Positioning
PPP由非差定位技术发展而来,是一种全球尺度的定位技术,PPP通过全球分布的约100个基准站解算高精度卫星星历产品修正用户轨道、钟差误差等,即可获得静态毫米至厘米级,动态厘米至分米级的定位服务。
缺点:与RTK瞬时厘米级相比,PPP需要近30分钟才能实现精密定位的初始化,且信号失锁后的重新初始化时间与首次初始化时间几乎一样长,因而限制了其在实时应用中的普及。
一篇文章详解RTK、PPP、PPP-RTK三种卫星测量技术,值得收藏
3、PPP-RTK,实时GNSS高精度导航定位服务
自上世纪八十年代GPS静态长基线解算开始,高精度GNSS数据处理发展至今已三十余年。随着实时GNSS高精度导航定位服务的普及,近年来PPP-RTK受到了国内外研究学者以及导航从业者的极大关注。
移动互联网的发展促进了导航与位置服务等新兴产业的形成,我国北斗卫星导航系统、欧洲Galileo系统的建设,以及美国GPS、俄罗斯GLONASS等全球卫星导航系统的现代化进程为优质的导航与位置服务提供了新的契机。
二、RTK、PPP与PPP-RTK对比
PPP-RTK通过状态域建模,将基准站“观测值误差”分解为卫星轨道、卫星钟差、卫星相位偏差、电离层延迟、对流程延迟等“状态量误差”,因此RTK和PPP/PPP-RTK也分别称为“观测值域差分”和“状态域差分”。不严格的说,数学意义上可以认为卫星轨道、卫星钟差、卫星相位偏差、电离层延迟、对流程延迟等状态量误差构成了GNSS观测误差空间的一组极大线性无关向量组,即构成了GNSS观测误差空间的一组基。该空间中任意向量,即观测值误差都可以认为是该组基向量的线性组合:基向量在对应卫星-接收机视线方向上的投影。
一个线性空间可以有无数组基(除零空间),所以GNSS观测误差空间一定也可以由其他基向量表达?是的,通过选取一组基准站“观测值误差”作为基向量,也能实现全球PPP-RTK服务。这不正是从NRTK,URTK走向PPP-RTK的方式吗?从这个角度理解,天上卫星和地面基准站对于定位服务来说可能并没有什么区别。然而与卫星轨道钟差、相位偏差、大气延迟这组基相比,“观测值误差”基向量的选择并不容易:既要保证相互独立,又要能张成整个空间(目前RTK观测值域误差向量即不相互独立,也难以张成整个空间),更麻烦的是该组基如何投影至卫星-接收机视线方向并不直观。
一篇文章详解RTK、PPP、PPP-RTK三种卫星测量技术,值得收藏
一组基能用最少的向量表达整个空间,因此相比于从观测值域差分RTK,状态域差分PPP-RTK能够以较小的通讯带宽实现广域(甚至全球)服务覆盖。
PPP-RTK中“PPP”体现在状态域参数:卫星轨道钟差、相位偏差等;“RTK”则体现在观测域参数:电离层延迟、对流程延迟等。PPP-RTK也面临不同区域“大气延迟”各异,因此对通信带宽要求高,难以满足星基广播式增强服务需求的挑战。
PPP-RTK从观测值层面实现了PPP与RTK的“紧组合”,以一种更优雅的方式解决了RTK“依赖于密集基准站资源,当多个CORS网间存在覆盖盲区时难以实现连续服务”的问题:有密集基准站与RTK相当、无密集基准站与PPP相当,无缝过渡。
从收敛速度、定位精度、覆盖范围三个维度进一步对比了RTK、PPP以及PPP-RTK三种模式的导航与位置服务,可以认为RTK与PPP是PPP-RTK服务模式的特例或延伸,因此PPP-RTK具有较高的伸缩性。
相比于RTK和PPP,PPP-RTK是一种更具弹性的服务模式,与杨元喜院士提出的弹性PNT服务体系更为契合。PPP-RTK服务模式的弹性体现在,卫星轨道钟差、相位偏差作为GNSS高精度定位的基础,可采用状态域表达实现星基增强服务,对于电离层延迟、对流层延迟增强,则可通过采样频率的调整以满足不同参考站密度、不同播发带宽、不同用户性能需求。武汉大学学者张小红等指出,同时兼顾模型精度与模型数据量的电离层延迟建模方法也是PPP-RTK需要解决的重要问题之一。
PPP作为北斗三号全球系统七大规划公开服务类型之一,已利用三颗GEO卫星B2b信号I支路为中国及周边地区用户提供30分钟内收敛的分米级免费服务,播发数据速率500bps,并预计将进一步增加播发带宽,进一步提升精度,减少收敛时间。显然PPP-RTK成为潜在的升级方案。
一篇文章详解RTK、PPP、PPP-RTK三种卫星测量技术,值得收藏
首先模拟采用2000bps带宽实现欧洲区域GPS、Galileo与GLONASS多系统PPP-RTK服务,实验中各用户站定位每10分钟重启。跟踪站网分布,定位68%收敛序列。采用星基多系统PPP-RTK,平面收敛至5厘米和2厘米分别需要0.5分钟和2.5分钟,高程收敛至10厘米和5厘米分别需要2分钟和3.5分钟,10分钟后,平面和高程统计精度RMS分别为1厘米和2.5厘米。
瞬时厘米级是RTK主要优势,全球低成本是PPP的主要优势。PPP-RTK不仅从算法层面统一了RTK与PPP,在实际应用中也同时具备两者优势,而RTK与PPP分别可看作是PPP-RTK服务模式的特例或延伸。当跟踪站网密度、播发带宽相同时,PPP-RTK能分别达到(甚至优于)RTK和PPP各自导航定位性能。
PPP-RTK中“PPP”体现在状态域参数:卫星轨道钟差、相位偏差等,可由状态向量表达,实现星基厘米级高精度增强;而PPP-RTK中“RTK”则体现在观测域参数:电离层延迟、对流程延迟等,通常采用一组离散化的时空采样点描述,同时可通过采样频率的调整以满足不同参考站密度、不同播发带宽、不同用户性能需求。因此,相对于RTK和PPP,PPP-RTK是一种更具弹性的高精度导航定位服务模式。
以上就是关于RTK、PPP、PPP-RTK三种卫星测量技术详解,本文内容来源于网络转载,出于传递信息及学习之目的,不代表本网站的观点、立场,本网站不对其真实性负责,仅供参考,